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ABSTRACT 

RADIATION PATTERN ANALYSIS OF THE TAPERED SLOT ANTENNA 

SEPTEMBER 1986 

Ramakrishna Janaswamy, B.Tech., R.E.C., WARANGAL, INDIA 

M.Tech., I.I.T., KHARAGPUR, INDIA 

Ph.D., UNIVERSITY OF MASSACHUSETTS 

Directed by: Professor Daniel H. Schaubert 

A theoretical model for the radiation characteristics of the tapered slot antenna 

is presented. The theory presented is valid for antennas having an arbitrary and 

smooth taper shape. The model adequately predicts the pattern dependence on the 

structural parameters of the antenna such as its length, the taper shape, the dielec- 

tric substrate and its thickness. The antenna is modelled as a tapered slot radiating 

in the presence of a conducting half-plane. The electric field distribution in the ta- 

pered slot is determined by effecting a stepped approximation to the continuous 

taper. Data on a uniform slot line is used to determine the slot field distribution 

in the stepped model. The uniform slot line is solved by the spectral Galerkin’s 

method and data on the slot wavelength and the characteristic impedance are gen- 

erated. Closed form expressions for these slot line parameters are developed. The 

half-plane Green’s function is used to compute the radiated fields from the tapered 

slot. Comparison is made between the computed and measured radiation patterns. 

Results are presented for the caaea of a constant width, a linear taper and an ex- 

ponential taper of the slot and the versatility of the model in treating an arbitrary 

slot taper is demonstrated. Newly observed experimental effects concerning the 

pattern dependence on the lateral dimension of the antenna are presented. Studies 

done to account for these effects for the special case of an air dielectric antenna are 

presented. 
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CHAPTER 1 

INTRODUCTION 

Over the past few years there has been an increasing interest in the use of 

planar antennas in microwave and millimeter wave systems. The various kinds of 

planar antennas presently in use may be classified into broadside radiating elements 

and end-fire radiating elements. Resonant elements such as printed dipoles, slots, 

and microstrip patches all radiate in the broadside direction. The element gain for 

all these antennas is fairly low and does not suffice in applications where 10 dB 

beamwidths of the order of 1 2 O  - 60' are required. This requirement can be readily 

met by using travelling wave antennas. The tapered slot antenna belongs to the 

class of end-fire travelling wave antennas and has several interesting applications in 

integrated circuitry, imaging and phased arrays. 

The tapered slot antenna consists of a tapered slot cut in a thin film of metal 

with or without an electrically thin substrate on one side of the film. The slot is 

narrow towards one end for efficient coupling to devices such as mixer diodes. Away 

from this region, the slot is tapered and a travelling wave propagating along the 

slot radiates in the end-fire direction. Gibson [7] used an exponentially tapered 

slot antenna (he called it the Vivaldi antenna) on an alumina substrate in a 8 - 40 

GHz video receiver module. Prasad and Mahapatra [24] introduced the Linearly 

Tapered Slot Antenna (LTSA). Their antenna waa short (M A,) and etched on a 25- 

mil alumina substrate. Korzeniowaki et d.[20] developed an imaging array system 

at 94 GHz using a l O A ,  LTSA on a 1-mil kapton substrate as an element. Yn- 

gvesson e t  01.[26] presented experimental results on Constant Width Slot Antennas 

(CWSAs). In all these works, it was demonstrated experimentally that the tapered 

1 
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slot antenna has a very wide pattern bandwidth and has the capacity to generate 

a symmetric main beam despite its planar geometry. Use of these antennas has 

so far been based on empirical designs, as no theory was available. It is highly 

desirable to have a theoretical model that can predict the radiation characteristics 

of the antenna so as to facilitate successful designs. The successful model should be 

able to account for the pattern dependence on the antenna structural parameters 

such as the length, shape of the taper, and the dielectric substrate permittivity and 

thickness. 

The purpose of this dissertation is to develop a theoretical model for the ra- 

diation characteristics of the tapered slot antenna. The theory presented is quite 

general in the sense that it is valid for any smooth taper of the slot. To validate 

the model, sufficient comparison with experiment is made using antennas of vari- 

ous lengths, taper shapes such as constant, linear and exponential, and for various 

substrate parameters. In the course of these comparisons, new experimental effects 

were observed concerning the pattern dependence on an additional parameter of 

the antenna and these are also presented. 

- 

Chapter 2 deals with a qualitative development of the model. The basic steps 

that constitute the theory and some of its salient features are described. It is 

shown that transmission line data on a wide uniform slot line are imperative in 

the development of the model. Questions as to why the antenna cannot be treated 

using a simpler model are addressed. 

Chapter 3 presents data on the transmission line properties of a uniform wide 

slot line on low permittivity substrates. The eigenvalue problem for the slot wave- 

length and the slot electric field is solved by the spectral Galerkin’s technique. 



I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

3 

Comparison is made between the computed results and those available in the litera- 

ture for high permittivity substrates. Comparison is also made with measurements. 

Closed form expressions for the slot wavelength and the slot line characteristic 

impedance are developed by curve-fitting the computed data. 

In Chapter 4, theory and results are presented for the radiation pattern of the 

antenna. The simpler case of an air dielectric LTSA is treated first. The slot field is 

obtained by employing a conformal mapping. The slot field for the more general case 

of a dielectric supported antenna and arbitrary slot taper is obtained by affecting a 

stepped approximation to the continuous taper. Transmission line data on a wide 

uniform slot line presented in Chapter 3 are utilized in this model. In either of the 

above two cases, radiated fields from the tapered slot are computed by using the 

half-plane Green’s function. Use of the half-plane Green’s function rather than the 

free space Green’s function for computing the far-fields is justified in this chapter. 

Chapter 5 presents results on the newly observed effects of the pattern de- 

pendence on the lateral dimension of the antenna. Whereas the theoretical model 

developed in Chapter 4 adequately predicts the radiation pattern when the lateral 

dimension of the antenna is electrically large, the pattern exhibits some interesting 

features as the antenna is truncated laterally. In particular, the main beam in the 

%plane is greatly narrowed, without causing much sidelobe degradation and with- 

out deteriorating the beam shape in the H-plane. Results are presented both for 

air dielectric and dielectric supported antennas. Studies done to treat these effects 

for the special case of an air dielectric LTSA are presented. 

Chapter 6 forms the conclusion. Some limitations of the theoretical model 

developed are also discussed. 
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CHAPTER 2 

METHOD OF ANALYSIS 

In this chapter, a qualitative development of the theoretical model is presented. 

The key steps involved in the theory are summarized and the need for the model 

adopted is justified. 

Fig. 2.la shows the geometry of a Linearly Tapered Slot.Antenna (LTSA). 

Metalization is present on only one side of the substrate. The antenna radiates in 

the end-fire direction i.e., in the negative x-direction. The radiated electric field is 

linearly polarized and is parallel to the plane of the slot. The antenna is usually 

etched on a thin and 10w-c~ substrate and made 3 - lOA,  long, where A, is the free 

space wavelength. Well formed radiation patterns can be obtained when the lateral 

dimension H is electrically small or electrically large. In the ensuing analysis it 

is assumed that H is electrically very large and will be considered to be infinite. 

The method of analysis consists of two steps. In the first step, the tangential 

component of the electric-field distribution in the tapered slot, hereafter referred to 

as the aperture distribution, is obtained. In the second step, far-fields radiated by 

the equivalent magnetic current in the slot are obtained by using an appropriate 

Green’s function. 

The aperture distribution in the tapered slot is determined by employing the 

usual travelling wave antenna assumption that the aperture distribution is governed 

predominantly by the propagating modes correeponding to the non-terminated 

structure [4]. The effect of the termination of the structure at ABCD can be 

incorporated by adding a backward travelling wave. One recognizes that under 

these conditions, the problem reduces to finding the field distribution for the case 

4 
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Fig. 2.1 Geometry of LTSA. (a) Original problem (b) Stepped approximation. 
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of a tapered slot line. To accomplish this, the continuous taper is approximated by 

means of a number of sections of line of uniform width connected end to end. This 

is illustrated in Fig. 2.lb. The slot wavelength and the characteristic impedance 

vary from section to section in accordance with the slot width. At this stage, one 

may use the theory of small reflections [3] to get an estimate for the overall reflec- 

tion coefficient arising from reflections from each of the step junctions and from 

the termination. However, for a long travelling wave antenna, the backward trav- 

elling wave on the structure does not contribute much to the front lobe. This will 

actually be illustrated in Chapter 4 by comparing the relative contributions due 

to unit strength forward and backward travelling waves on the tapered structure. - 
Numerical studies have shown that the contribution due to the backward wave can 

be ignored whenever L 2 3X,. 

The aperture distribution for the stepped model is found in the following man- 

ner. Solution to the eigenvalue problem for a uniform slot line completely determines 

the aperture distribution in each parallel section (the slot electric field is determined 

up to a multiplicative constant and this is of no consequence if one were interested in 

a uniform slot line alone). To account for the step discontinuity, a power continuity 

criterion (i.e., cohstant power flow along the axis of the tapered line) is enforced at 

the step junction. This criterion relates the undetermined multiplicative constants 

in each aection, thus yielding the field distribution in the stepped structure corre- 

sponding to a forward travelling wave on the aperture. It will be shown that data 

on the characteristic impedance of a wide uniform slot line are needed to enforce 

this criterion. The slot wavelength, the slot electric field and the characteristic 

impedance of a uniform wide slot line on a low permittivity substrate are obtained 
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in [12], and [14]. 

The second step in the analysis is the determination of the fields radiated by 

the tapered slot using the field distribution found in the first step. Termination of 

the aperture results in the edge ABCD in the metalization and currents are induced 

due to edge diffraction. These must be included in the analysis. The edge induced 

currents are important because the radiation pattern of a slot in an infinite ground 

plane (i.e., without taking the edge ABCD into account) has a null in the plane 

of the conductor. It is shown in Chapter 4 that the E-plane pattern is governed 

entirely by the edge induced currents. The prospective Green’s function must be 

able to directly accommodate this important phenomenon. It is seen from Fig. - 2.1 
that the slot extends as far as the edge ABCD, thus precluding the use of far-field 

ray scattering theories such as GTD and UAT. This important near-field scattering 

is taken into account by treating the slot as radiating in the presence of a conducting 

half-plane (i.e.,the half-plane Green’s function is used). 

It may also be noted that a simple analysis based on approximating the cur- 

rents on the metalization as flowing along wires-similar to a V-antenna-and sub- 

sequently using the free space Green’s function to find the far-fields is not satisfac- 

tory. Such a model incorrectly predicts a minimum in the end-fire direction as the 

flare angle 27 + 0 (as in a CWSA), whereas the two step procedure described above 

correctly predicts an end-fire main beam. The success of the latter is attributed 

mainly to the ttde of the half-plane Green’s function. 

Tai [25] has developed the exact theory of infinitesimal slots (both-one sided 

and two sided) radiating in the presence of a conducting half-plane . This half-plane 

Green’s function is used in conjunction with the aperture distribution found in step 
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one to compute the far-fields radiated by each uniform section. Radiation from the 

entire length is determined by adding the contributions from all the sections. 
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CHAPTER 3 

SLOT LINE DATA ON LOW-PERMITTIVITY SUBSTRATES 

Transmission line properties of a uniform slot line shown in Fig. 3.1 have been 

investigated by a number of authors [Z], [e], [ll], and [18]. However, all the data 

available in the literature are on high-€, substrates and for narrow slots. In par- 

ticular, the data axe restricted to er 2 9.6, W / d  < 2, d/X, 2 0.02, where A, 

is the free-space wavelength. For use as an antenna, the slot is very wide, typi- 

cally approaching one free-space wavelength and the antenna is usually built on a 

low+ substrate. It is desirable to know the transmission line properties of wide 

slot lines on IoW-Er substrates. In this chapter, theoretical and experimental-re- 

sults are presented for the slot wavelength A’ and the characteristic impedance Zo 

of a wide uniform slot line on low-er substrates. The problem is formulated in 

the spectral domain and solved by the spectral Galerkin technique. Comparison is 

made between the computed results and those available in the literature for high-e, 

substrates. Comparison for the dot wavelength is also made with measurements. 

Closed form expressions are developed for A’ and 2,. Material presented in this 

chapter is published in (121 and (141 and has a direct bearing in the development 

of the theoretical model for the slot antenna. The formulation of a slot line using 

the spectral Galerkin’s technique is not new but is included here for the sake of 

completeness. 

3.1 Formulation of the Problem 

Fig. 3.1 shows the geometry of a uniform slot line. The objective is to solve for 

A‘ and 2, for the dominant mode on the line. Using the generalized spectral domain 

immittance approach [lo], expressions are obtained for the two dimensional Green’s 

9 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

10 

f 
d 
t 2 :  

x J 

Fig. 3.1 Geometry of slot line. 
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dyadic. This Green's dyadic relates the slot electric field to the totd surface current 

that resides on the slot-side of the air-dielectric interface. The unknown transverse 

and longitudinal slot fields are expanded in a set of basis functions and Galerkin's 

testing procedure employed. Parseval's theorem is invoked to finally result in a 

matrix eigenvalue problem. The eigensolution of this system completely determines 

A' and Zo. 

1. Slot Wavelength. The foregoing procedure leads to (121 

where the elements of the submatrices P, Q, R and S are given by 

Pmn = rF==Z&Z: da 
--oo 

+00 

Qmn = Rnm = 1 ?,,i!~Zida 
-00 

Smn = F=&Zzda 
--oo 7- 

( 3 . 2 ~ )  

(3.2b) 

(3 .2~)  

and the elements of the Green's dyadic are given by 



I 
I 
I 
1 
I 
I 
I 
1 
1 
I 
I 
I 
I 
1 
I 
I 

12 

where ko = w m  is the free space wavenumber and 71 and 72 are the y-directed 

propagation constants in air and the dielectric slab respectively, and 

and it has been assumed that the slot field is expanded as 

M. M, 

n= 1 n= 1 

A tilde in the above expressions denotes quantities Fourier transformed with respect 

to z and the superscript 8 stands for slot. CY is the transform variable. The elements 

of the coefficient matrix are all functions of the slot wavelength A'. The dispersion 

relation is obtained by solving for values of A' that render the determinant of the 

coefficient matrix to zero at a particular frequency, d, W and E ~ .  The correspond- 

ing eigenvector determines the unknowns in the expansion (up to a multiplicative 

constant). 

2. Charactcrbtic Impedance. The characteristic impedance 2, of the slot line 

is defined aa [18] 

IVOl' 
Pf 

z, = - 

where VO is the voltage across the slot at y = d and given by 

+w/2 

(3.4) 

- W / 2  
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Pf is the real part of the complex power flow along the line and is given by 

N N  

The second equality in (3.6) follows from Parseval's theorem. The fields E, H 

in the spectral domain pertaining to the air and dielectric regions can be expressed 

in terms of the slot field E:, E: defined in (3.3). 

3.2. Numerical Result8 and Discussion 

The basis functions employed in all the computations are 

(3.74 

where, Tn(*) and U,(*) are Tchebycheff polynomials of the first and second kind 

respectively. 

The longitudinal (x-directed) component is an odd function of I, whereas the 

transverse (2-directed) component is an even function of z, which is the field config- 

uration for the dominant mode on the line. Also, the basis functions chosen satisfy 

the proper edge conditions. 

The Fourier transforms of the basis functions in (3.7) are readily found in a 

closed form as (51 

( 3 . 8 ~ )  

(3.8b) 

The integrals in (3.2) must be evaluated numerically. However, the choice of 

basis functions in (3.7) facilitates the extraction of the asymptotic contribution of 
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the integrands and converts them to rapidly converging ones suitable for efficient 

numerical computation. For computing 2, the integration with respect to y in (3.6) 

can be carried out in a closed form. However, the integration on the a variable must 

be done numerically. The integrands in this case decay (asymptotically) twice as 

fast as those in (3.2) and can be evaluated easily without asymptotic extraction. 

The slot wavelength A’ is stationary with respect to the slot field and it was 

found that the A’ converges with only one basis function for E:. However, more 

than one basis function is needed for the convergence of 2,. The maximum number 

of basis functions needed for E: and E: during the computation of 2, was 3 and 5 

respectively, when the slot width approached one free space wavelength. - 

Computer programs were developed to compute A’ and Zo for a specified er,  

A, and d. Table 3.1 shows the comparison between the present computations and 

those in (111 for er = 20, d = 0.348 cm and W = 0.0635 cm. It is seen that the two 

agree well within 1%. Also, the results in [ll] have been reported to be within 1% of 

those presented in (211. Table 3.2 shows the comparison between the computations 

and measurements done here. The slot wavelength was measured using the scheme 

suggested in [2]. Experiments were performed both on a narrow slot and on a wide 

slot. The agreement is generally within 2%. It may be noted, however, that the 

computed slot wavelength is always greater than the measured value. Measurements 

performed on yet another substrate (RT/Duroid 5880) indicated the same. This 

slight discrepancy is found in narrow slot 811 well tu in wide slots. Some studies 

were made to ascertain this systematic discrepancy. The prime suspect was the 

presence of a thin layer of adhesive between the metal and dielectric substrate. If 

the dielectric constant of the adhesive were higher than that of the substrate, it 
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TABLE 3.1 
COMPARISON OF COMPUTED SLOT WAVELENGTH 

Frequency A t / A o  % Error 
(GHz) Itoh [ll] Present 

1 0.368 0.367 -0.40 
2 0.344 0.341 -0.27 
3 0.330 0.328 -0.60 
4 0.319 0.317 - 0.40 
5 0.308 0.308 -0.07 
6 0.299 0.298 -0.20 

€r = 20, d = 0.348 cm, W = 0.0635 cm 

TABLE 3.2 
COMPARISON OF COMPUTED AND MEASURED SLOT WAVELENGTH 

~~ 

W / d  Frequency Measured Computed % Error 
(GHz) A l p 0  A t / A O  

1.34 
2.0 0.873 0.889 +1.39 
2.5 0.866 0.883 +1.50 
3.0 0.862 0.879 +1.90 
3.5 0.852 0.875 +2.00 
4 .O 0.867 0.871 +0.39 

10.71 
2.0 0.933 0.958 +2.64 
3 .O 0.945 0.951 +0.66 
4.0 0.929 0.943 +1.50 
5 .O 0.922 0.939 +1.89 
6.0 0.916 0.933 + 1.80 

€r = 2.55, d = 1.57m.m (0.062 in) 
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could result in a somewhat smaller measured wavelength. Perturbation analysis 

similar to the one used in [17] was performed so as to quantify this effect. An 

expression for the wavelength correction AA‘/A’ is given in Appendix A. Table 3.3 

shows the correction due to the presence of an adhesive with a normalized thickness 

t / d  of 0.02. Results are shown for two different substrates. The influence of the 

adhesive on A’ diminishes as the slot width is increased. Also, the correction in 

the slot wavelength is insignificant even for narrow slots, when a lower substrate 

is used. It was concluded that the presence of a thin layer of adhesive does not 

account for the 2% discrepancy. Other factors such as the thickness of the metal 

tend to increase the slot wavelength [16] and were not persued. 
- 

Table 3.4 shows the agreement of the characteristic impedance between the 

present computations and those in [21]. Figs. 3.2-3.5 illustrate the typical variation 

of A’ and 2, with slot width W. Curves are presented for cr = 2.22 and for Er = 9.8. 

S.S. Clored Form Expressfona for A‘ and 2, 

Empirical formulas have been developed for the normalized slot wavelength 

A’/Ao and the charactersitic impedance 2,. These formulas have been obtained 

by least-square curvefitting the computed data. In each case, the average of the 

absolute percentage error ‘Av’ and the maximum percentage error ‘Max’ observed 

in a nonrandom sample of 120 data points is presented. Also, where possible, the 

region around which the maximum error has been observed is indicated. 

The following formulas are all valid within 0.006 5 d / X ,  5 0.06. 
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0.0015 5 W/X, 5 0.075 

6 .3 (W/d)~ ,~ . '~~  X'/Xo = 1.045 - 0.365 In €r + 
(238.64 + 100W/d) 

Av = 0.37 %, Max = 2.2 % (at one point). 

+ 133.5 In (lo€,) d m  er - 2.22)~  [ ( 2.36 ] 2, = 60 + 3.69sin 

+ 2.81 [l - O.Oll~~(4.48 + In E , ) ]  (W/d )  In (lOOd/Xo) 

+ 131.1(1.028 - I n E , ) J m  

+ 12.48(1+ 0.18 In er) W/d 
d e r  - 2.06 + 0.85(W/d)' 

Av = 0.67 %, Max = 2.7 % (at one point). 

0.075 5 W/Ao 5 1.0 

0 . 6 2 1 ~ r ~ . ~ ~ ~  (W/Xo) X'/X, = 1.194 - 0.24 In - 
(1.344 + W/d) 

+ ''1 In (d/X,) 
C r  

Av = 0.69 %, Max = -2.6 % (at two points, for W/Xo > 0.8). 

(3.10) 

(3.11) 

(3.12) I 



Av = l.9%, IMaxI = 5.4% (at three points, for W/Xo > 0.8). 

13.8 5 €r 5 9.8 I 

0.0015 5 W/Xo 5 0.075 

I i  er [ (W/d  + 0.435) X'/Xo = 0.9217 - 0.277 In €r + 0.0322(W/d) 

3.65 
-0.01 In (d /X , )  4.6 - 1 €r2 d m ( 9 . 0 6  - lOOW/Xo) 

(3.13) 

Av = 0.6 %, IMaxI = 3 % (at three points, for W/d > 1, and€, > 6.0). 

Z o  = 73.6 - 2.15€, + (638.9 - 31.37€r)(W/Xo)0's + ( 3 0 . 2 3 J m  - 225) 

W / d  + 0.51(€, + 2.12)(W/d) In (lOOd/Xo) (W/d  + 0.876~r - 2) - 

- O.753€r(d/Ao)/Jm (3.14) 

Av = 1.58%,Max = 5.4%, (at three points, for W / d  > 1.67). 

0.075 5 W/Xo 5 1.0 

X'/Xo = 1.05 - 0.04€r + 1.411 [" ;g2'] In { W / d  - 2(1 - 0.146~r)) 

+0.111(1- 0 . 3 6 6 e r ) d m  

+0.139{1+ 0.52€r(14.7 - € r ) } ( d / X o )  In ( d / X o )  (3.15) 

Av = 0.75 %, \Max1 = 3.2 % (at two points, for W/Xo = 0.075, ( d / X o )  > 0.03). 

1.1 1+0.132 20 = 120.75 - 3.74~r + 50 [t=-'(Z€r) - 0.81 (W/d)  [ 

In [(lOOd/Ao) + 47iiGi5G] 
+ 14.21(1 - 0.458€r)(W/Xo + 0.33)2((100d/Xo) + 5.1 h e r  - 13.1) (3.16) 

Av = 2.0 %, /Max[ = 5.8 %(at two points, for W/Xo < 0.1). In the above expression, 

tan-' (.) assumes its principal value. 
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TABLE 3.3 
EFFECT OF ADHESIVE ON SLOT WAVELENGTH 

20.00 0.69 0.020 0.373 82.3 3.25 +4.20 x 
2.55 1.34 0.016 0.879 135.0 4.00 -0.99 x 
2.55 10.71 0.010 0.958 200.0 4.00 -1.75 x 10-3 

t / d  = 0.02, *(the superscripts s and a denote substrate and adhesive respectively) 

TABLE 3.4 
COMPARISON OF COMPUTED CHARACTERISTIC IMPEDANCE 

Cr d / L  W / d  20 (n) 
Mariani [21] Present 

9.6 0.060 1.0 140 142 
11.0 0.040 1.5 160 160 
13.0 0.030 0.4 80 82 
16.0 0.025 2.0 150 151 
20.0 0.030 1.0 100 101 
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Fig. S.S Characteristic impedance of slot lime versus slot width. 
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Fig. S.6 Characteristic ,impedance of slot lime versus slot width. 
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CHAPTER 4 

FAR-FIELDS OF THE ANTENNA 

In this chapter theory and results for the far-fields of the tapered slot antenna 

are presented. The simpler case of an air dielectric LTSA (TEM-LTSA) is treated 

first and presented in section 4.1. The TEM-LTSA is simpler and direct to treat 

analytically but will nevertheless shed light on the basic physics governing the ra- 

diation mechanism of the tapered slot antenna. Furthermore, it forms the basis of 

analysis and will serve as a check for the more general case of dielectric supported 

antennas (er > 1). The aperture distribution for this general case is developed in 

section 4.2 via the stepped approximation. Basic steps leading to the development 

of the model are presented and expressions for the far-fields of the antenna are 
- 

given. In section 4.3 comparison is shown between the computed and measured 

results. Numerous cases are considered to demonstrate the versatility of the the- 

oretical model in treating an arbitrary taper. In particular, results are presented 

for the case of a constant taper (the CWSA), linear taper (the LTSA) and the 

exponential taper (the Vivaldi). Results are presented both for the case of a thin 

substrate and a thick substrate. 

4.1. TEM-LTSA 

A detailed account of the mathematical derivation of the aperture distribution 

and the far-fields of a TEM-LTSA is published in [15]. Only the important steps 

relevant to understanding of the problem will be presented here. 

1. Formulation. As discussed in Chapter 2, the aperture distribution for the 

antenna can be determined approximately by solving the non-terminated version of 

the antenna structure. For the special case of air dielectric and a linear taper, the 

24 
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Fig. 4.1 Geometry of coplanar b i h  structure. 
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structure is reduced to a pair of coplanar fins as shown in Fig. 4.1. A pair of infinite 

cones in a homogeneous medium supports a TEM wave and the wave equation can 

be solved exactly by employing a conformal mapping [l]. It is shown in I151 that 

the x- and z-directed components of the slot electric field are given approximately 

as 

where ( R , a )  are the polar coordinates in the plane of the slot as shown in Fig. 4.1 

and 27 is the flare angle of the LTSA. - 

The equivalent magnetic currents in the slot are proportional to (4.1) and (4.2) 

and radiate in the presence of a conducting half-plane as described in Chapter 2. 

This half-plane Green’s function rigorously accounts for the near-field scattering by 

the edge ABCD. It can be shown from the analysis of infinitesimal slots radiating in 

the presence of a conducting half-plane that the longitudinal slot field E: does not 

contribute to the far-field in either principal plane. This may be explained physically 

as follows. The far-field component at any observation point is composed of two 

termrr-a term involving the incident field i.e., field in the absence of the edge ABCD 

and a ~econd term, the scattered field, that arises as a result of induced currents on 

the metal due to the presence of the edge ABCD. Both the incident field and the 

scattered field arising out of E: are perpendicular to the zz-plane and contribute 

only to the cross-polarized component. Hence, only field due to E: is needed as far 

as the copolar component is concerned. The far-field ee(O,t$) due to an x-directed 

two sided infinitesimal slot (that eupports E:) located at (d,y’) on a conducting 
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half-plane is given by 1151 (suppressing the constants) 

where u = koxtsin8(1+ cos 4) and F(*) is the Fresnel integral defined by 

(4.4) 

It may be noted that as the slot is receded awayfrom the edge, kox' + 00 and 

ejt/'F(u) + l/& The second term in (4.3) decays to zero and cg is dominated by 

the first term. Further, the first term reduces to the familiar far-field expressionlor 

a slot in an infinite ground plane(except for an insignificant constant phase factor). 

Consequently, the first term may be labelled the 'incident field' and the second term 

the 'scattered field'. The scattered field is particularly significant for small kox'. 

In the Eplane, t$ = A and it is seen from (4.3) that the incident field is identically 

zero, aa expected. The far-field in the %plane is governed entirely by the scattered 

field. In contrast to the free-space Green's function, the half-plane Green's function 

correctly predicts a nonzero field in the Eplane. 

The far-zone pattern Eo of the LTSA is obtained by integrating (4.2) over 

the tapered slot region with (4.3) as a kernel. It is shown in [15] that for small 

flare angles 27, the resulting two dimensional integral may be reduced to a one 

dimensional one. The result is 
+- 

(4.5) (F' (us) - F' (ug (1 - cos a)))] da 
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where v1 = ko L (1 + sin 6 cos r$ cos a - cos 6 sin 6) ,u2 = ko L sin 6 (1 + cos 4) and 

v3 = koLsec a (1 - sin(6 + a)} and the superscript * denotes complex conjugation. 

2. Numerical Results and Discussion. The integral in (4.5) must be evaluated 

numerically. The singularity in the integrand as a + f7 is integrable and poses 

no problem in the numerical integration. Radiation patterns for the LTSA have 

been computed for lengths L/Ao varying between 3 and 10 and for flare angles 27 

ranging between 8" and 21". 

The aperture distribution given in (4.2) includes only a forward travelling wave 

that would propagate freely on a non-terminated structure. Termination of the 

structure at ABCD may result in a backward travelling wave. However, the inclusion 

of a backward travelling wave on the aperture has been found to have a minimal 

effect on the front lobe of the pattern for a sufficiently long antenna (L/Ao 2 3). 

To illustrate this, computed patterns due to unit strength forward and backward 

waves on the aperture of a SA, long LTSA with 27 = loo are plotted in Fig. 4.2. 

It is men that the contribution of the backward wave in the forward half space 

(z < 0) is not very significant. Also, the effect of the backward wave is much less 

severe in the Eplane than in the H-plane. This is because of the nonzero aperture 

width in the Eplane that introduces an additional factor in the pattern similar to 

the space factor of an aperture antenna. This factor is responsible for the decay of 

the backward wave contribution away from the end-fire direction. There is no such 

aperture effect in the H-plane. The backward wave contribution diminishes as the 

length of the antenna is increased. In all the subsequent computations, only the 

forward travelling wave aa given in (4.2) is assumed for the aperture distribution. 

The computed pattern in the E and H-planes for a 6.3A0 long antenna with 
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Pig. 4.2 Radiation patterns-relative contributions of forward and backward 
wavm. 
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27 = 15’ is shown in Fig. 4.3. Corresponding experimental patterns are also plotted 

on the same figure. The experimental model was built using a 5-mil brass sheet with 

Styrofoam (cr 1.05) strips attached along the periphery to support it. A half- 

height (dimension H in Fig. 2.la) of 11.0cm was used for the antenna. A microwave 

diode (HP-5082-2215) was connected across the feed gap to detect directly the 

modulated RF signal (at GHz). The diode was left unbiased (to prolong its life). 

This, however, results in a narrower dynamic range. This explains the levelling off of 

the measured pattern at around 15 dB that is seen in Fig. 4.5. Table 4.1 summarizes 

the comparison between theory and experiment. It is seen that excellent agreement 

is obtained between the two for all the important aspects of the pattern viz., the 

3 dB and the 10 dB beamwidth and the first side lobe level. A similar agreement 

between the theory and experiment has been observed for other antenna lengths 

between 3X0 and 10Xo. Comparison between theory and experiment has also been 

made for other flare angles of the LTSA. Fig. 4.4 illustrates the comparison of the 

3 dB beamwidth for flare angles varying between 8 O  and 21° for a b e d  length 

of 5X0. The slight systematic discrepancy seen in the H-plane is caused by the 

Styrofoam mount that waa used during the measurements. Favorable comparison 

has also been obtained for an 8x0 long antenna over these flare angles. The H-plane 

beamwidth is relatively insensitive to the flare angle of the antenna as it does not 

‘see’ the aperture width. In all the cases tested, the LTSA half-height H satisfied 

H 2 2.75A0 and H 2 3W0, where WO = L tan 7. This restriction is placed on H so 

that comparison with theory (which assumes infinite H) is meaningful. 

- 

The computed 3 dB and 10 dB beamwidths of the LTSA in the E- and the 

H-plane as a function of L/X, and with 27 as a parameter are plotted in Fig. 4.5 
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Observation Angle (Deg.) 

Radiation pattern of TEM-LTSA. Fig. 4.3 
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Fig. 4.4 Measured and computed beamwidths of TEM-LTSA vereus flare- 
angle. 
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and Fig. 4.6 respectively. Also plotted in Fig. 4.6 is the 3 dB beamwidth (H-plane) 

of a uniform magnitude magnetic line source supporting a travelling wave with 

freespace propagation constant. The line source is assumed to lie along the axis of 

the TEM-LTSA. Data for this case is obtained from Fig. 11.3 of [22]. (Note: The 

element pattern of the line source is not considered in Fig. 11.3 of [22], inclusion of 

which would have resulted in a null in the end-fire direction of the antenna. This is 

ofcourse consistent with what had already been stated in subsection 1 on the use of 

the freespace Green’s function in computing the far-fields. It is customary to ignore 

the element pattern while plotting the 3 dB beamwidth of a travelling antenna as 

is done in [22]). It is seen that the solid curve agrees very closely with the data of 

[22] suggesting that the TEM-LTSA behaves as a travelling wave antenna in the 
- 

I H-plane. The TEM-LTSA supports a spherical wave as opposed to a plane wave in 

the magnetic line source case. In spite of this difference, the two have an almost 

identical 3 dB beamwidth. It can be shown that the H-plane patterns of the TEM- 

LTSA, and that of a magnetic line source supporting a freespace travelling wave 

(denoted by the superscript TWA) are given by 

The element pattern sin4 is ignored from the second of these expressions, in the 

data plotted in Fig. 4.6. Incidentally the k t  expression that haa been obtained 

using the theory presented here, correctly predicts the end-fire nature of the LTSA 

pattern, in constraat to the latter. Use of the half-plane Green’s function results 

in the Fresnel integral F(*) in the former compared to the sin(.) factor seen in the 
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Fig. 4.6 H-plane beamwidth of TEM-LTSA versus normalized length. 
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latter that results on using the freespace Green’s function. The H-plane pattern 

of the LTSA is not sensitive to the actual variation of the field across the slot 

width but only to the metage of the slot field. This average slot field coincides 

with the e q u i p t e n t i d  surface of the coplanar fin structure (cf. Fig. 4.1) that lies 

along the antenna axis. Although the TEM-LTSA supports a spherical wave, the 

field for which decays along the antenna axis, the average value remains the same 

throughout. This explains for the fact that the 3 dB beamwidth of the spherical- 

wave-supporting TEM-LTSA agrees so closely with that of a plane-wave-supporting 

travelling wave antenna. 

A similar analogy with a travelling wave antenna in meaningless in the E-plane, 
- 

as a magnetic line source predicts an identically zero pattern in the E-plane. 

4.2. Dielectric Supported Antennas 

Fig. 4.7a shows the geometry of the tapered slot antenna supported by a 

dielectric substrate having cr > 1. The aperture distribution in the tapered slot 

is determined via the stepped approximation and by utilizing the transmission line 

data on a wide uniform slot l i e .  The presence of the dielectric is accounted for 

in the determination of the aperture distribution but is ignored in the subsequent 

step that utilizes the half-plane Green’s function to compute the fat-fields from the 

tapered slot. 

1. Stepped Approximation. Fig. 4.7b illustrates a stepped approximation to 

the continuous taper obtained by considering it to be made up of a number of 

sections of uniform width for which the impedance and slot wavelength vary from 

section to section in accordance with the dot width. For the purpose of radiation 

pattern calculations, it is further assumed that the step junctions do not generate 
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problem (b) Stepped 
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any higher order modes. As the radiation pattern is stationary with respect to 

the aperture distribution (91, these approximations are not expected to result in 

noticable discrepancies in the pattern. That this is the actual case is shown in a 

later section by comparing with experiment. 

The phase distribution in each uniform section is the same as that of an equiva- 

lent slot line having the same parameters. The slot wavelength A', the characteristic 

impedance 2, and the slot electric field of a uniform wide slot line have been ob- 

tained in Chapter 3 by the spectral Galerkin's technique. The slot electric field 

is found up to a multiplicative constant. To account for the taper and to relate 

the fields from section to section, a power continuity criterion is enforced at the 

step junction of two adjacent slots. This criterion implies that there is no reflection 

or radiation at the step junction and, therefore, provides a field distribution cor- 

responding to a purely propagating wave on the tapered structure. This constant 

power constraint determines the multiplicative constant in each uniform section. 

Other criteria such as constant voltage across each slot have also been tried (for the 

special case of air dielectric LTSA) but yielded results not differing much from the 

ones obtained with power conservation. The power conservation criteria is more 

physical in nature and suggests that the non-terminated tapered structure supports 

a purely propagating wave. It enables, in a very elegant manner, the use of transmis- 

sion line properties viz., A', and 2, of the non-TEM slot line in the determination of 

the slot field distribution for the tapered structure. It recovers the field distribution 

approximately, but very closely, for the special case of a TEM-LTSA that can be 

solved more rigorously as in section 4.1. 

The power Pf, the characteristic impedance Zo and the slot electric field E: 
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are related in (3.4) and (3.5) and may be recast in the form 

For the basis functions chosen in (3.3), EJO) = al ,  where a1 is the amplitude 

of the first transverse basis function. A constant power flow along the slot implies 

that 

where the superscripts denote the section number. Renormalizing the mode coef- 

ficients in (3.3) as per (4.7) and inserting the phase factor of the propagating slot 

wave, the z-directed slot field E: in the it" section is given by - 

The mode coefficients a; in the it" section are all normalized such that af = 1 

and all other mode coefficients are determined in terms of uf. Equation (4.8) 

completely determines the aperture distribution in the stepped structure both in 

magnitude and in phase. The far-zone field E$ from the it" section is obtained by 

integrating (4.8) over the it" section with (4.3) as a kernel. Radiation from the 

antenna ia obtained by adding up the contributions from all sections. It can be 

shown that the result for E: can be obtained in a closed form. The result is 

I E-Plane I 

(4.9) 
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where, C' = ('o/'')i*h 3 ko = %/A0 

uc = &ox$, (e' - sinB) , iic = kozc (c' + sinB) 
1 I I I 

= kozX (c' +  COS^) , ~i = k o z i  (c' -  COS^) 

eh = k o z i  (c' + 1) 
I I I 1 

q i  = k o x i  (c' - I), 
p i  = k o z i  (1 + COS 4) 

I 1 I I 

l 1 

and zf, x i  are the lower and upper coordinates respectively of the ith section. F(.) 

is the Fresnel integral defined in (4.4) and * denotes complex conjugation. For 

the sake of generality, the contribution due to a backward travelling wave on the 

aperture with a relative amplitude I' is also included in the above expressions. 

E:(*) is determined from (3.3), (3.7) and (3.8). Numerical studies have indicated 

that considering only the dominant term in (3.3) gives sufficiently accurate results 

for the pattern, in which case E:(*) = a&(-). 
43 .  Numerical P d t o  and Dhueion 

The validity of the stepped approximation has been verified by comparing 

the radiation patterns of a TEM-LTSA obtained using the aperture distribution 

determined by (a) the stepped approximation, and (b) the more accurate method 

of conformal mapping employed in section 4.1. Fig. 4.8 shows the comparison 
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Fig. 4.8 Radiation patterns of TEM-LTSA obtained using stepped approxi- 
mation and exact aperture distribution. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
1 
I 
I 
I 
1 
I 
I 
I 

42 

between the two for an LTSA with 27 = 15" and L = 7A0. Convergent results 

for the pattern in the stepped model were obtained with 5 steps/wavelength. The 

H-plane pattern is less sensitive to the exact shape of the aperture and the two cases 

are almost indistinguishable. The stepped model predicts a slightly narrower main 

beam in the E-plane compared to the TEM analysis case. However, the difference 

is not very significant. Favorable comparison between the two validates the stepped 

model for C r  = 1 antenna. The model should also be valid for dielectric supported 

antennas when the substrate is electrically thin. In all the subsequent computations, 

5 steps/wavelength are chosen in the stepped model. 

All the pattern measurements reported in this section are done with the test 

antenna in a receiving mode. A microwave diode is connected across the feed gap 

to detect the RF signal. The diode may be biased or left unbiased depending on the 

dynamic range it provides. In most cases, linearity of the diode was checked (for 

faithful power level reproduction) before taking the actual measurements. Also, for 

the sake of clarity, results presented below are categorised according to the taper 

shape. 

1. LTSA. Fig. 2.1 shows the geometry of a Linearly Tapered Slot Antenna 

(LTSA). Fig. 4.8 shows the comparison between theory and experiment for an LTSA 

built on a ZO-mil, fr = 2.22 (Duroid) substrate. The flare angle 27 of the antenna 

was loo and L = 4.2A0 as measured at 10.0 GHz. A good agreement between the 

two is seen. The slight ripple seen in the experimental Eplane main lobe is due to 

the finite height 2 8  of the antenna. Table 4.2 summarizes the comparison between 

the two. Dispersion data on the slot wavelength A' needed in the pattern calcula- 

tions were obtained using the spectral Galerkin's technique of Chapter 3. However, 
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Fig. 4.9 Measured and computed radiation patterns of LTSA on thin sub- 
strate. 
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TABLE 4.1 
PATTERN COMPARISON FOR TEM-LTSA 

3 dB Beamwidth ( ") 
Theory Measured Theory Measured Theory Measured 

10 dB Beamwidth ( ") First SLL (dB) 

E-plane 31.8 34.3 47.8 44.1 -14.5 - 
H-plane 42.2 39.0 57.6 60.0 -9.2 -8.6 

L/X,  = 6.3,27 = 15" 

TABLE 4.2 
PATTERN COMPARISON FOR cr = 2.22 LTSA 

3 dB Beamwidth ( ") 
Theory Measured Theory Measured Theory Measured 

10 dB Beamwidth ( ") First SLL (dB) 

E-plane 39.8 38.3 61.0 57.0 -12.4 -11.5 
H-plane 33.7 28.8 50.5 44.4 - 10.0 -8.8 

d / X o  = 0.017, L/X, = 4.2,27 = 10" 
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measurements done on A’ on this particular substrate indicated that the calculated 

slot wavelength was systematically displaced above the measured value by about 

+2.5%. Measurements were done up to a slot width of 0.8A0. For a travelling wave 

antenna, this slight change in the wavelength (or equivalently, phase velocity) can 

have dramatic effects in the pattern beamwidths. Typically the 3 dB beamwidth 

changes by about 20% for a 2-3% change in the phase velocity [4] (the change being 

effected at the freespace velocity) for an antenna that is four freespace wavelengths 

long. At a slot width of 0.74A0 (that corresponds to the width of the slot at the 

termination for the antenna above) the calculated wavelength was +2.7% above the 

measured one. The normalized slot wavelength at the feed point of the LTSA for 

the above set of parameters is 0.892 and that at the termination is approximately 

0.98. A correction factor of -2.7% for A’ was used all along the slot aperture in 

the computed patterns displayed in Fig. 4.9. Good agreement with experiment 

is obtained aa seen in Fig. 4.9. If on the otherhand, the uncorrected slot wave- 

length were used in the computed patterns, a poorer agreement with experiment 

is expected. Fig. 4.10 shows the comparison between the computations based on 

corrected and uncorrected slot wavelengths. The corrected slot wavelength results 

in a pattern whose H-plane beamwidth at the 3 dB point is about 18.5% narrower 

compared to the one obtained using the uncorrected slot wavelength. It is clear that 

the slot wavelength must be found very accurately in order to predict an accurate 

beamwidth. The effect of this slight discrepancy in A’ on the pattern calculations 

becomes increasingly significant as the antenna length is increased (due to the ac- 

cumulated phase shift the wave gathers as it progresses along the tapered slot). 

Furthermore, the slot wavelength has a more pronounced effect in the H-plane than 

- 
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Fig. 4.10 Radiation patterns of LTSA on thin substrate obtained using corrected 
and uncorrected dot wavelengths. 
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in the Eplane. This is because the H-plane pattern depends only on the phase ve- 

locity of the travelling wave (i.e., A’) and the antenna length, whereas the E-plane 

pattern has additional dependence on the slot taper shape. 

Patterns are shown only in the forward hemisphere (z < 0,  cf. Fig. 4.7) 

where the theory is valid. Full experimental patterns covering the entire space are 

included in Appendix B both for the E- and the H-planes. The cross polar patterns 

for the antenna in the two principal planes were also measured and were found to 

be -19 dB below the maximum of the copolar pattern. 

The slot line data needed in the pattern computation in Fig. 4.9 were generated 

by running the slot line program for each uniform slot section. However, data could 

also have been obtained from the curve-fitted equations provided in Chapter 3. 

Fig. 4.11. shows the comparison of the patterns obtained using actual data ‘(Le., 

the computed slot wavelength without any correction factor) and the fitted data. 

The two agree very well indicating that curve fitted data can be readily used in the 

pat tern computations. 

Fig. 4.12 shows experimental confirmation of the pattern for an antenna with 

a larger taper angle of 16,. Other parameters of the antenna are cr = 2.22,d/X0 = 

0.014 and L/Ao = 4.0. The slot width W, at the termination is 1.124X0. The 

correction factor for A’ for this case waa found to be -2.15%. A very good agree- 

ment between the theoretical and experimental is Been. The computed pattern is 

calculated with the corrected slot wavelength. Fig. 4.13 illustrates the effect of the 

correction factor on the pattern. Computed patterns are shown with the uncor- 

rected and the corrected slot wavelength. The 3 dB beamwidth in the H-plane for 

two cases differ by about 14%. 
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pig. 4.11 Computed radiation patterns of LTSA on thin substrate, obtained 
using gcncrafcd slot l i e  data and curve-fitted slot line data. 



0.00 

n m -10.00 

L 

0 
a, 
Q) > .- 
Y 
U 

-20.00 - 
Q) 
E 

-30.00 

I 

L/xo = 4.0 

27 = 16" 
€r = 2.22 

d / A o  = 0.014 

H-Plane 

I I 

Computed \. . . . . . . . .  - Measured 

1 E-Plane 

90.00 60.00 30.00 0.00 30.00 

.. . .  * .  * .  

. . -  . - -  
. *  . *  a . . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  -. 8 

49 

60.00 90.00 

Observation Angle (Des.) 

Pig. 4.12 Measured and computed radiation patterns of a wide-flare-angle LTSA 
on thin substrate. 
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Fig. 4.1s Computed radiation patterns of wide-flare-angle LTSA obtained using 
corrected and uncowect cd dot wavelengths. 
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Results presented above for the two antennas are for a thin substrate (d/X, < 

0.02). It is interesting to note that a nearly circular main lobe is obtained in both 

cases. Fig. 4.14a shows the patterns for a thick substrate case. The antenna was 

built on a 59-mil Duroid substrate (RT/Duroid 5880, cr = 2.22) corresponding to 

d/X,  = 0.06 at 12.0 GHz. L = 6.1X0 and 27 = 14.25,. For this set of parameters, 

the slot width W, at the termination is approximately 1.5X0. The normalized slot 

wavelength increases from 0.83 at the feed gap to 0.92 at the termination. The 

experimental model had a half-height of 12.7cm corresponding to H/X, = 5.1. 

Fig. 4.14a shows a very good agreement between the experimental and theoretical 

results. The theory very accurately predicts the main lobe in both the principal 

planes and the first side lobe level in the H-plane. No correction factor for the 
- 

slot wavelength was used in the computed patterns as measurements for the slot 

wavelength for a wide slot on a thick substrate were not performed. However, for 

the sake of comparing with the thin substrate case, patterns have been computed 

with and without a hypothetical correction factor of -2.5% in the slot wavelength 

and are plotted in Fig. 4.14b. It is seen that, unlike the thin substrate case (cf. 

Fig. 4.10), correction does not change the main lobe beamwidth, although it ap- 

preciably changes the side lobe level in the H-plane. Computation done without 

any hypothetical correction factor agrees better with experiment as is seen in Fig. 

4.14a. It appears that the normalized slot wavelength calculated by the spectral 

Galerkin’s technique is quite accurate when it is not close to unity (as in the thin 

substrate case.) This corresponds to using an electrically thick substrate or one 

with a high relative permittivity. The experimental Eplane pattern had a slight 

dip of about 0.3 dB at the boresight (this and the slight ripple in the E-plane main 
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(H/Xo = 5.1) 

Fig. 4.14a Measured and computed radiation patterns of LTSA on thick sub- 
strate. Frequency = 12 GHz 
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Fig. 4.14b Effect of wavelength correction on the radiation pattern of LTSA on 
thick substrate. 
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lobe could have been caused by the lateral truncation of the experimental model). 

This can be seen more clearly in Fig. B3. For proper comparison, the computed 

pattern is normalized so that the two patterns have the same value at the boresight. 

Fig. 4.15 shows the comparison for the antenna at 8 GHz. The dip at boresight at 

this frequency was around 1.5 dB and is rather high. Full experimental patterns are 

shown in Fig. B4. The patterns differ considerably in the Eplane, which is more 

sensitive to the lateral dimensions of the antenna. The 3 dB beamwidths in the 

H-plane for the two patterns differ by about 30%. 

Comparison for the pattern was also done for a high-€, substrate. Fig. 4.16a 

shows the comparison for an LTSA built on a 10-mil RT/Duroid 6010.5 substrate. 

The antenna was made 15.0cm long (corresponding to L/X, = 4.0 at 8.0 GHz) with 

a flare angle of 14". For this set of parameters, d/Xo = 0.0068,~,  = lX, .  The 

experimental model had H = 12.7cm, the same value as in the previous antenna. It 

is seen from Fig. 4.16a that a good agreement is obtained between the experiment 

and theory. No correction factor for A' was introduced in the computations. The 

normalized slot wavelength increases from a value 0.582 at the feed gap to about 

0.91 at the termination. Again, for the sake of comparing with the lOW-€r, and thin 

substrate c-e, patterns are compared with and without a hypothetical correction 

factor of -2.5% in the slot wavelength and the results plotted in Fig. 4.16b. This 

hypothetical correction factor results in a H-plane 3-dB beamwidth that is about 

10% narrower than the one obtained without any correction. This is in contrast to 

18.5% for the thin substrate case. Pattern computed without any correction factor 

agrees fairly well with experiment, although a slightly better agreement could be 

obtained (especially the matching of minima in the H-plane) with some correction. 

- 
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Fig. 4.16 Measured and computed radiation patterns of LTSA on thick sub- 
strate. Frequency = 8GHz. 
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Fig. 4.16a Measured and computed radiation patterns of LTSA on high-€, sub- 
strate. Frequency = 8 GHz 
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Fig. 4.16b Effect of wavelength correction on the radiation pattern of LTSA on 
high-c, substrate. 



I 
I 
I 
I 
I 
1 
I 
I 
I 
1 
I 
I 
1 
I 
I 
I 
I 
I 
I 

58 

However, the change obtained is not as noticable as in the low-c,, and thin substrate 

case of Fig. 4.10. Also, no noticable dip is observed in the experimental E-plane 

pattern, as can be seen from Fig. B5. This is in contrast to Fig. B4 where a large 

dip is noticed in the %plane, despite the fact that both the antennas have the same 

dimension H = 12.7cm. Clearly, the lateral truncation is affecting these two cases 

quite differently. 

Fig. 4.17 illustrates the comparison for the high-c, substrate at 10 GHz. At this 

frequency, d/X, = 0.0085, &/Ao = 5.0, and W, = 1.25x0. No correction factor for A' 

was introduced in the computed pattern. The computed pattern exhibits splitting 

in the H-plane main beam, typical of a long travelling wave antenna that supports a 

very slow wave. The measured pattern, however, does not exhibit this phenomenon. 
- 

Also, the measured pattern was to some extent unsymmetric in both principal planes 

as can be seen from Fig. B6. This is possibly caused by the Styrofoam mount that 

Y=E -sed tc support the thin substrate. It is seen from Fig. 4.17, that except for 

the splitting of the H-plane main beam, the theoretical predictions agree reasonably 

well with experiment. 

It is interesting to compare the experimental 3 dB beamwidths in the H-plane 

for the LTSAs considered in Figs. 4.9,4.12,4.15, and 4.16a. All have approximately 

the same length (= 4x0) but different substrates and their thicknesses. The flare 

angles of the above antennas are loo, le0, 14.25', ~ndl4~respectively and the H-plane 

beamwidtl~-28~, 40°, 30°, und30" respectively. In contrast to the TEM-LTSA (cf. 

Fig. 4.4), the beamwidth for the dielectric eupported antennas is not independent of 

the flare angle. This is because the antennas above have different slow wave factors 

(a Xo/A') owing to their different substrate parameters. Given the same substrate 
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Fig. 4.17 Measured and computed radiation patterns of LTSA on high-c, sub- 
strate. F'requency = 10 GHz. 
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parameters (Cr > 1) and the length, an LTSA with a smaller flare angle supports 

a slower wave and has, consequently, a narrower H-plane beamwidth. This can be 

seen by comparing the beamwidth data from Figs. 4.9, and 4.10. The former has 

a beamwidth of 28" and the latter 40°. The experimental patterns presented in 

this dissertation could not be compared with those presented in literature [19, 261, 

as the latter made no mention of the height H that was used in the experimental 

model and knowledge of which is required for proper comparison. It is shown in 

Chapter 5 that the beamwidths are sensitive to the height H when it is small. 

2. CWSA. Fig. 4.18 shows the geometry of a Constant Width Slot Antenna 

(CWSA). A short taper is included to form a transition between the narrow feed 

gap and the wide constant width slot. Fig. 4.19a shows the comparison between 

theory and experiment for a CWSA built on a 20-mil RT/Duroid 5880 ( C r  = 2.22) 

substrate. This substrate is the same at3 the one used for the LTSA in Figs. 4.9, 

and 4.12. Results are shown at 10GHz and for Lf = 2.5cm,La = 14.8cm and 

W, = 2.95cm. The short taper was modeled by the stepped approximation. The 

experimental model had a half-height H = 12.7 cm. Fig. 4.19a illustrates a favorable 

comparison between the two. A correction factor of -2.7% was used for A' in the 

computed pattern. It is, however, seen that the experimental pattern exhibits higher 

far-out sidelobes than the computed one. It is felt that this could be due to the 

presence of a stronger backward wave on the aperture, and also (possibly) due to 

scattering by the metallic egde that is parallel to the edge ABCD and located at the 

feed gap (cf. Fig. 4.18). All the theoretical patterns computed in the present work 

have been obtained by using I' = 0 (Le., magnitude of the backward wave) in (4.9) 

and (4.10), as indicated at the begining of this discussion. To verify the first of the 
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Pig- 4-18 Geometry of CWSA. 
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Pig. 4.19a Measured and computed radiation patterns of CWSA on thin sub- 
strate. Frequency = 10 GHz 
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above notions, patterns have been computed for the above CWSA using a different 

value of I'. Fig. 4.19b compares the patterns obtained with I' = - l , O ,  and 1. It is 

seen that higher far-out side lobes are obtained by including a backward wave in 

the aperture distribution. The main beam in either principal plane is, however, not 

effected much. This is in compliance with an earlier claim that the backward wave 

does not contribute much to the front lobe of the antenna. 

Fig. 4.20 shows the effect of the correction in A' on the radiation pattern. Pat- 

terns are compared with and without the correction factor. The -2.7% correction 

factor results in a 3 dB beamwidth in the H-plane that is about 30% less than the 

pattern obtained using the uncorrected slot wavelength. 

Fig. 4.21. shows the pattern comparison for the CWSA at 8.0 GHz. Correcied 

slot wavelength w&s used in the computed pattern. The theory predicts a side lobe 

level in the H-plane that is about 4 dB below the experimental one. Complete 

experimental patterns corresponding to Figs. 4.19, and 4.21 are included in Figs. 

B7, B8 respectively. 

S. Vivaldi. A Vivaldi antenna is built with an exponential slot taper. The 

generating equation for the slot width W(<) is given by 

W($) = w p  

where Wf if the slot width at the feed gap, < is the distance variable measured from 

the feed gap along the antenna length and T is the rate at which the exponential 

curve grows. A Vivaldi antenna WM built on a 1.27 cm (1/2-inch) thick Styrofoam 

sheet (er sj 1.05) and using Wf = 0.06cm,T = 0.2cm-I and L = 19.0cm. For 

this set of parameters, W, = 5.3cm. Fig. 4.22 shows the radiation patterns at 10 

GHz. At this frequency, L = 6.3X0 and W, = 1.77A0. For the experimental case, 
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Fig. 4.19b Effect of backward wave on CWSA pattern. 
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Fig. 4.20 Computed radiation patterns of CWSA on thin substrate obtained 
using corrected and uncorrected slot wavelengths. 
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Fig. 4.21 Meauured and computed radiation patterns of CWSA on thin sub- 
strate. Frequency = 8GHz. 
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Pig. 4.22 Measured and computed radiation patterns of Vivaldi antenna on a 
1/2-in~h Styrofoam sheet. 
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H = 15.24 cm. The exponential taper was modeled by the stepped approximation. 

A value 0.9999 was aaeumed for the slot wavelength in each step and the charac- 

teristic impedance was taken to be constant for all the uniform sections. This was 

done so as to avoid the numerical instability that may have to be incurred if the 

slot line program is used to compute these parameters. The agreement between the 

theory and experiment in Fig. 4.22. is fairly good. The main beam as well as the 

sidelobes are adequately modeled. Complete experimental patterns are shown in 

Fig. B9. 

4. Use of Curve-Fitted Slot Lie Data. All the patterns in the previous sections 

were computed using seperately generated slot line data. In this section, use - of 

the curve-fitted data, provided in Chapter 3, as an alternative in calculating the 

patterns is demonstrated. The substrate dielectric constants and their thicknesses 

are chosen randomly so as to make this numerical experiment unbiased. In each 

case, pattern computations based on generated slot line data and its curve-fitted 

counterpart are compared. For the sake of brevity, the former is referred to as 

computation # 1 and the latter computation # 2. 

Figs. 4.23-25 show the computed patterns of CWSA, LTSA and Vivaldi anten- 

nas, all having a total length of 6A0 and er = 3.5, d/Ao = 0.02, Wi = 0.02A0, W, = 

l A , .  In the caae of the CWSA, Lj = 0.5A0. Each of the three antennas has a differ- 

ent distribution of A’ and 2, along the antenna length, owing to the different taper 

shape. It is seen that computation #1 and computation #2 are indistinguishable in 

the of CWSA, but slightly displaced in LTSA and Vivaldi. However, the difference 

between the two is not very appreciable. For this choice of parameters, computation 

#2 predicts a slightly wider main beam in the latter two. It is interesting to note 
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Fig. 4.2s Computed radiation pattern of C WSA-generated and curve-fitted 
dot line data. 
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Fig. 4.24 Computed radiation patterns of LTS A-generated and curve-fitted 
slot line data. 
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that the for the same set of physical parameters, the CWSA, LTSA and the Vivaldi 

have progressively increasing beamwidths and progressively decreasingly sidelobes. 

Figs. 4.26-28 show the computed radiation patterns of CWSA, LTSA and 

Vivaldi antenna, all having a total length of 5DX0 and er = 5.0, d / X o  = 0.008, W f  = 

0.02X0, Wo = 0.9Xo. Lf = 0.5X0 in the case of CWSA. It is seen that computation 

#2 agrees very closely with computation #l. 
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Fig. 4.26 Computed radiation patterns of C WSA-generated and curve-fitted 
slot line data. 
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Fig. 4.28 Computed radiation patterns of Vivaldi-generated and curve-fitted 
slot line data. 
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CHAPTER 5 

EFFECT OF LATERAL TRUNCATION ON THE ANTENNA PATTERN 

The foregoing theory presented in Chapter 4 is valid for antennas with an elec- 

trically large H. Ideally the theory is applicable when H + 00. It has been shown 

in the previous chapter by comparing with experiment that the theory predicts 

reasonably well for cases with H greater than approximately 3Xo. However, it has 

been observed experimentally that the pattern exhibits some interesting features as 

the antenna is truncated laterally (i.e., H made electrically small). In particular, 

lateral truncation results in an E-plane beamwidth that is, in most cases, consid- 

erably narrower than the one obtained using an antenna with a large H. In this 

chapter, results are presented for the pattern dependence on the lateral dimension 

H of the antenna. Results presented are mostly experimental. However, prelimi- 

nary theoretical results for treating the truncation effects for the special case of an 

air-dielectric LTSA are also presented. 

S.1 Experimental Results 

- 

Figs. 5.1-5.3 show the radiation patterns of an LTSA built on a 1-inch sty- 

rofoam sheet, and with L = 24cm,Wf = 1.51nm,Wo = 5.1cm(= Z"), and f = 

9GHz. At this frequency, L = 7.2x0, and W, = 1.53Xo. The lateral dimension 

H of the antenna was successively decreased over the range 4.6 2 H/Xo 2 0.76(= 

0.5Wo/Xo) and in each case the pattern measured. It ie seen from the plots that 

beam ehape is being affected considerably as the height is varied. In particular, a 

very narrow Eplane main beam is obtained when H = 5.lcm. There is, however, a 

slight broadening of the H-plane beam (compared to the one obtained with a larger 

HI. 

76 
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Fig. 6.1 Measured radiation pattern of LTSA on a 1-inch Styrofoam sheet &s 

a function of H. (L = 24 cm, Wf = 1.5 mm, W, = 5.1 cm, f = 9 GHz) 
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Pig. 6.3 Measured radiation pattern of LTSA on a 1-inch Styrofoam sheet as 
a function of H. (L = 24 cm, Wf = 1.5 mm, W, = 5.1 cm, f = 9 GHz) 
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Fig. 6 3  Measured radiation pattern of LTSA on a 1-inch atyrofoam sheet as 
a function of H. (L = 24 cm, Wj = 1.5 111113, W, = 5.1 cm, j = 9 GHz) 
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Figs. 5.4-5.6 illustrate the truncation effects for a er = 2.22 antenna. Pat- 

terns are shown for an LTSA with L = 12.6cm,Wj = lmm,Wo = 2.2cm,d = 

20mils, and f = 8 GHz. Once again it is seen that the beam shape changes signif- 

icantly as H is varied. 

Experiments performed on other LTSAs and CWSAs by varying the antenna 

height and keeping all other parameters fixed have indicated the same trend. It is 

clear that the theory presented in Chapter 4 is not adequate to predict the pattern 

dependence on the lateral dimension of the antenna. To study these effects, the 

simpler case of an air-dielectric LTSA is presently being explored. 

6.2 Theoretical Studies - 
This section presents results on the theoretical studies performed so far to ac- 

count for the pattern dependence on the lateral dimension H of an air-dielectric 

LTSA. The problem is formulated using the well known moment-method and solu- 

tion is sought for the total electic aurface current flowing on the metal plates that 

constitute the antenna. 

At a first glance, it may appear that a high-frequency ray theory such as 

GTD [8] may be used in conjunction with the aperture-field modeled in Chapter 4. 

However, a closer look would indicate that the ray-theory is not adequate to explain 

the severe changes that occur in the main-beam region as H is decreased. High 

frequency diffraction caused by the edges that are formed as a result of lateral 

truncation do not influence the main beam region as would be clear from a eimple 

ray tracing. It is felt at this stage that the truncation effect is more of a resonance 

phenomenon occuring in the lateral direction and may be modeled by the moment- 

method. 
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Fig. 5.4 Measured radiation pattern of LTSA on Duroid substrate as a function 
of H. (L = 12.6cm,Wf = lmm, W,, = 2.2cm,cr = 2.22, 
d = 20 mils, f = 8GHz) 
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To study the problem using the moment-method, a slightly different geometry 

as shown in Fig. 5.7 is considered. As opposed to the trapezoidal plates present in 

a regular LTSA shown in Fig. 2.1, the modified geometry consists of two skewed 

rectangular plates. This geometry facilitates the use of rectangular subsectioning, 

the theory for which is well developed in (231 and is shown to result in a computa- 

tionally efficient moment-method matrix. This is particularly useful in view of the 

fact that large matrices are expected to result during the moment-method model- 

ing of the LTSA. The computer program developed in [23] is used here to compute 

the elements of the impedance matrix. The source was modeled by means of an 

infinitesimal current source placed at the antenna apex as shown in Fig. 5.7. This 

simple source model should be adequate as far as the radiation patterns are con- 

cerned. An alternate source model consisting of an ideal voltage source connected 

across the two plates by means of bent short-wire segments was also tried and found 

to yield identical pattern results as the former. 

Fig. 5.8 shows the computed pattern of a modified air-dielectric LTSA with 

L = 3A0, H' = 0.75A0, and 27 = 11.5". Four segments along the height and fifteen 

segments along the length were chosen on each plate for the computations. Both Jz 

and Jv were included in the calculations. As a comparison, the measured pattern 

for the ~ a m e  geometry is shown in Fig. 5.9. It is seen the two differ considerably 

in the H-plane. The maximum in the H-plane in the computed pattern occurs at 

an angle other than the end-fire direction. Such a large offset is not observed in 

the measured pattern. It was found that in a number of other computations, the 

computed pattern always yielded a H-plane beam that was skewed off the end-fire 

direction that has not been noticed in the measured pattern. It was found that 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

85 

Fig. 5.7 Geometry of recta.ngu1a.r plates. 
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Fig. 6.8 Computed radiation pattern of antenna. 
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Fig. 6.9 Measured radiation pattern of antenna. 
(L = 15cm, H' = 3.75cm,27 = ll.5",Wf = 1 . 3 m )  
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the cause of this is due to a phase error in the current distribution that incorrectly 

results in a fast wave flowing along the plates. 

Figs. 5.10 and 5.11 show the current distributions along the two principal cuts 

(cf. Fig. 5.7) of the rectangular plate. The phase of J. is in steps because the 

phase is constant across the basis functions. It is seen from Fig. 5.10 that the 

code incorrectly predicts a fast wave along the plate and one that is nonlinear (i.e., 

variable wavelength). This phase error makes the antenna look like a leaky-wave 

antenna, resulting in a non-end-fire main beam in the H-plane. The impedance 

matrix in the moment method calculations should yield a Toeplitz symmetric matrix 

when structure is segmented uniformly and when the same type of basis functions 

are employed in each subsection. Uniform segmentation and the same type of basis 
- 

functions in each subsection were employed in the present computations. However, 

the code failed to yield toeplitz matrix. In particular, the code was tested to 

compute the impedance elements of a 0.5xo x 0.5xo square plate. The plate was 

subdivided into 3 subsections along the length and 3 subsections along the breadth. 

The mode layout is shown in Fig. 5.12. The total number of plate modes are 12 as 

indicated in the figure. It was found that 12*,11 and IZlo,ll differed by as much as 

6%. Some more elements exhibited the same unsymmetry, although the magnitude 

of the difference waa not aa high. It ie not yet known whether this could result in 

the phase error observed in the current distribution. Further studies are needed to 

explain the cause of this error. 
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Fig. 6.12 Mode Layout on 0.5x0 x 0.5x0 square conducting plate. 
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CHAPTER 6 

CONCLUSION 

A theoretical model for the tapered slot antenna is presented. The model is 

is valid for any smooth taper of the slot. The problem is solved by modeleing the 

slot electric field and using the half-plane Green’s function to compute the far- 

fields. The aperture field is obtained by affecting a stepped approximation to the 

continuous taper and utilizing the uniform wide slot liie data. The uniform wide 

slot line is solved by the spectral Galerkin’s technique and closed form expressions 

are developed for the slot wave length and the slot characteristic impedance. 

Numerous comparisons with measurement are made to demonstrate the vep6a- 

tility of the model in treating an arbitrary slot taper. In particular, results are pre- 

sented for a Linearly Tapered Slot Antenna (LTSA), Constant Width Slot Antenna 

(CWSA), and an exponentially tapered slot antenna (the Vivaldi). The stepped ap- 

proximation is validated for the special case of an air dielectric LTSA (TEM-LTSA) 

by comparing the patterns against a more rigorous model. 

The model predicts reasonably good results for thin as well as thick low-cr 

substrates. The model also gives sufficiently accurate results for thin and high-€, 

Substrates. It is shown that to predict accurate pattern results, the slot wavelength 

for thin and low-+ eubstrates must be found with an accuracy better than 2.5% 

presently obtainable with the spectral Galerkin’s technique. Comparison with ex- 

periment have been shown for substrate thicknesses up to 0.06X0 for the 10w-c~ case. 

The highest cr for which results are presented was cr = 10.5. The maximum sub- 

strate thickness considered for this case was 0.0085Ao. Favorable comparison with 

experiment has been shown for antenna lengths between 3.4 5 L / X o  5 6.1 and for 
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flare angles between 8" I 27 5 21" (in the case of LTSAs). It is however felt that 

the model could also be used for longer antenna lengths, although slight errors in the 

slot wavelength could result in larger errors in the pattern shapes. It is shown that 

the model successfully treats various slot taper shapes such aa constant width, linear 

taper, and exponential taper. It is shown that curve-fitted slot line data could be 

used in the pattern computations as an alternative to the timeconsuming process 

of generating the data in each uniform section in the stepped approximation. The 

model is ideally valid for an antenna with an infinite lateral extent. Good results 

are, however, obtained when the lateral dimension (i.e., height) of the antenna is 

atleast 3 wavelengths long. It is, however, shown experimentally that narrower E- 

plane beamwidths are obtainable when an antenna having a smaller height is used. 

Theoretical efforts to treat the special case of air-dielectric, finite-height LTSA are 

- 

presented. Further studies in this regard are needed. 
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APPENDIX A 

EFFECT OF ADHESIVE ON SLOT WAVELENGTH 

In this section, an expression is given for the change in slot wavelength due to 

the presence of a thin layer of adhesive (assumed to be a lossless dielectric) between 

the metal and the dielectric substrate of a uniform slot line. The expression given 

is based on a perturbation analysis, similar to the one performed in [17]. 

Not a tion: 

Xo = free space wavelength. 

2a ko = - 
A0 

A' = guide wavelength of slot line. 

2n k, = - 
A' 

AX' = change in slot wavelength due to the presence of adhesive. 

L: = dielectric constant of substrate. 

= dielectric constant of adhesive. 

d = thickness of substrate. 

t = thickneas of adhesive. 

W = slot width. 

2, = characteristic impedance of dot line based on power, voltage definition. 

qo = intrinsic impedance of free space B 120nohms. 

a! = transform variable. Also the variable of integration. 

7: = a2 + kf - ki 
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When t / d  < 1, it can be shown that AX'/X' is given by 

2 
1 + e: tanh (724 

-k 72 tanh (724 
d a  where I (e:, W,d) = T(1- cos aW) 

0 

It is seen that the change in slot wavelength is directly proportional to the 

differential permittivity ber and to the thickness t of the adhesive. The characteristic 

impedance 2, of a slot line increases as the slot width W is increased. Howeverrit 

increases at a rate slower than the increase in W. The overall effect of W in the 

above expression is that the magnitude of the change in slot wavelength decreases 

as the slot width is increased. The improper integral I(e: ,  W, d )  can be computed 

in a numerically efficient manner by extracting the asymptotic contribution of the 

integrand. As a sample calculation, when e: = 20, W/d = 0.695 and d/Xo  = 0.02 

x'/xo = 0.373, 2, = 82.26ohms 

For an adhesive with e: = 3.25 and t/d = 0.02, the above expression gives 



APPENDIX B 

MEASURED RADIATION PATTERNS 
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Fig. B1. Measured radiation pattern of LTSA on thin substrate. 
(cr = 2.22,d = 20xds,L = 12.6cm,27 = 10°,Wf = 1.5mm, 
W, = 2.35 cm, H = 7cm, f = 10 GHz) 
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Fig. B2. Meaeured radiation pattern of LTSA on thin substrate. 
(e, = 2.22,d = 20mils,L = 15.0cm,27 = 16",Wf = 1.5mm, 
W, = 4.37 cm, IT = 10.2, cm, f = 8 GHz) 
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Fig. Btl. Measured radiation pattern of LTSA on high-€, substrate. 

W, = 3.7cm, H = 12.7cm, f = 10 GHz) 
(€r = 10.5,dz lOdlS,L= 14.9cm,21= 14O,Wf =0.5-, 
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Fig. B7. Measured radiation pattern of CWSA on thin substrate. 
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